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Abstract 

Link discovery is a new challenge in data mining whose 
primary concerns are to identify strong links and discover 
hidden relationships among entities and organizations based 
on low-level, incomplete and noisy evidence data. To 
address this challenge, we are developing a hybrid link 
discovery system called KOJAK that combines state-of-the-
art knowledge representation and reasoning (KR&R) 
technology with statistical clustering and analysis 
techniques from the area of data mining.  In this paper we 
report on the architecture and technology of its first fully 
completed module called the KOJAK Group Finder. The 
Group Finder is capable of finding hidden groups and group 
members in large evidence databases. Our group finding 
approach addresses a variety of important LD challenges, 
such as being able to exploit heterogeneous and structurally 
rich evidence, handling the connectivity curse, noise and 
corruption as well as the capability to scale up to very large, 
realistic data sets.  The first version of the KOJAK Group 
Finder has been successfully tested and evaluated on a 
variety of synthetic datasets. 

Introduction   
The development of information technology that could aid 
law enforcement and intelligence organizations in their 
efforts to detect and prevent illegal and fraudulent 
activities as well as threats to national security has become 
an important topic for research and development.  Since 
the amount of relevant information, tips, data and reports 
increases daily at a rapid pace, analyzing such data 
manually to its full potential has become impossible. 
Hence, new automated techniques are needed to take full 
advantage of all available information.  
 One of the central steps in supporting such analysis is 
link discovery (LD), which is a relatively new form of data 
mining.  Link discovery can be viewed as the process of 
identifying complex, multi-relational patterns that indicate 
potentially illegal or threat activities in large amounts of 
data.  More broadly, it also includes looking for not 
directly explainable connections that may indicate 
previously unknown but significant relationships such as 
new groups or capabilities (Senator, 2002) . 
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 Link discovery presents a variety of difficult challenges.  
First, data ranges from highly unstructured sources such as 
reports, news stories, etc. to highly structured sources such 
as traditional relational databases.  Unstructured sources 
need to be preprocessed first either manually or via natural 
language extraction methods before they can be used by 
LD methods.  Second, data is complex, multi-relational 
and contains many mostly irrelevant connections 
(connectivity curse).  Third, data is noisy, incomplete, 
corrupted and full of unaligned aliases.  Finally, relevant 
data sources are heterogeneous, distributed and can be very 
high volume.  
 To address these challenges we are developing a hybrid 
link discovery system called KOJAK that combines state-
of-the-art knowledge representation and reasoning 
(KR&R) technology with statistical techniques from the 
area of data mining.  Using KR&R technology allows us to 
represent extracted evidence at very high fidelity, build 
and utilize high quality and reusable ontologies and 
domain theories, have a natural means to represent 
abstraction and meta-knowledge such as the 
interestingness of certain relations, and leverage 
sophisticated reasoning algorithms to uncover implicit 
semantic connections. Using data or knowledge mining 
technology allows us to uncover hidden relationships not 
explicitly represented in the data or findable by logical 
inference, for example, entities that seem to be strongly 
related based on statistical properties of their 
communication patterns.  
 The full KOJAK system contains a variety of 
experimental LD components such as an abductive, logic-
based Pattern Finder to identify complex patterns of 
interest in the evidence and a Connection Finder to identify 
interesting and unusual entities and connections (Lin & 
Chalupsky 2003).  In this paper we only report on the 
architecture and technology of its first fully completed 
module called the KOJAK Group Finder (GF).  The Group 
Finder is capable of finding hidden groups and group 
members in large evidence databases. Our group finding 
approach addresses a variety of important LD challenges, 
such as being able to exploit heterogeneous and 
structurally rich evidence, handling the connectivity curse, 
noise and corruption as well as the capability to scale up to 
very large, realistic data sets.  The first version of the 
KOJAK Group Finder has been successfully tested and 
evaluated on a variety of synthetic datasets. 
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The Group Detection Problem 
A major problem in the area of link discovery is the 
discovery of hidden organizational structure such as 
groups and their members.  There are of course many 
organizations and groups visible and detectable in real 
world data, but we are usually only interested in detecting 
certain types of groups such as organized crime rings, 
terrorist groups, etc.  Group detection can be further 
broken down into (1) discovering hidden members of 
known groups (or group extension) and (2) identifying 
completely unknown groups.   
 A known group (e.g., a terrorist group such as the RAF) 
is identified by a given name and a set of known members. 
The problem then is to discover potential additional hidden 
members of such a group given evidence of 
communication events, business transactions, familial 
relationships, etc.  For unknown groups neither name nor 
known members are available.  All we know are certain 
suspicious individuals (“bad guys”) in the database and 
their connection to certain events of interest. The main task 
here is to identify additional suspicious individuals and 
cluster them appropriately to hypothesize new real-world 
groups, e.g., a new money laundering ring. While our 
techniques address both questions, we believe group 
extension to be the more common and important problem. 
 Another important problem characteristic that influenced 
our solution approach concerns the data.  Evidence 
available to law enforcement organizations is split into 
primary and secondary sources.  Primary evidence is lower 
volume, high reliability, usually “owned” by the 
organization and can be searched and processed in 
arbitrary ways.  Secondary evidence is usually not owned 
by the organization (e.g., might come from news articles or 
the Web), is higher volume, might only be searchable in 
restricted ways and might be associated with a cost (e.g., 
access might require a warrant).  Our group detection 
approach needs to take these different characteristics into 
account to keep cost at a minimum and properly handle 
access restrictions to secondary data sources. 

The KOJAK Group Finder 
The KOJAK Group Finder is a hybrid logic-
based/statistical LD component designed to solve group 
detection problems.  It can answer the following questions: 
• How likely is P a member of group G? 
• How likely are P and Q members of the same group? 
• How strongly connected are P and Q? 
Figure 1 shows the general architecture.  The system takes 
primary and secondary evidence (stored in relational 
databases) as input and produces group hypotheses (i.e., 
lists of group members) as output.  The system works in 
four phases. First, a logic-based group seed generator 
analyzes the primary evidence and outputs a set of seed 
groups using deductive and abductive reasoning over a set 
of domain patterns and constraints. Second, an 
information-theoretic mutual information model finds 
likely new candidates for each group, producing an 

extended group.  Third, the mutual information model is 
used to rank these likely members by how strongly 
connected they are to the seed members.  Fourth, the 
ranked extended group is pruned using a threshold to 
produce the final output. 
 

Figure 1: KOJAK Group Finder Architecture. 

 The processing for known and unknown groups is 
somewhat different at the beginning and end of the 
process.  First, the seed generation for unknown groups is 
different, since there is less information available. Second, 
the generation of unknown groups involves an extra step 
because the extended groups need to be clustered to 
eliminate duplicates before the thresholding step.  
 The logic-based seed generation module is based upon 
the PowerLoom™ knowledge representation & reasoning 
system (PowerLoom, 2003).  The mutual information 
module was implemented in the Matlab programming 
language.  The modules are integrated by combining the 
C++ translation of PowerLoom and the C translation of the 
Matlab modules into a single program.  Evidence 
databases are stored in MySQL and accessed from both 
Matlab and PowerLoom via ODBC. The primary and 
secondary evidence databases uses a very general evidence 
schema developed as part of DARPA’s Evidence 
Extraction and Link Discovery (EELD) program (Senator, 
2002) which should make it easy to transition to different 
domains.  

The Need for a Hybrid Approach 
Link discovery is a very challenging problem.  It requires 
the successful exploitation of complex evidence that comes 
in many different types, is fragmented, incomplete, 
uncertain and very large-scale.  LD requires reasoning with 
abstractions, e.g., that brother-of and husband-of are both 
subtypes of a family-relation, temporal and spatial reasoning, 
e.g., that cities are subregions of counties which are 
subregions of states, etc., common-sense type inferences, 
e.g., that if two people bought tickets for the same event, 
they probably were at one point in close spatial proximity 
in the same city, and constrained search, e.g., one might 
want to look more closely at people who joined a company 
around the same time a suspect joined.  The knowledge 
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and ontologies needed for these types of inferences are 
very naturally modeled in a symbolic, logic-based 
approach as done in the logic-based seed generator of the 
KOJAK Group Finder.  However, LD also needs detection 
and reasoning with statistical phenomena such as 
communication patterns, behavior similarity, etc., which 
requires cumulative analysis of evidence that cannot be 
done in logic but is most effectively done in specialized 
models such as our mutual information component.  Such 
models, on the other hand, are not well-suited for the 
representation of complex domains and usually assume 
some data normalization and simplification.  Given these 
characteristics of the problem, using a hybrid approach that 
combines the strengths of multiple paradigms is a natural 
choice.  How these two approaches work together for the 
KOJAK Group Finder is described below. 

Logic-Based Seed Generation 
The first phase of the KOJAK group detection process is 
the generation of seed groups.  Each seed group is 
intended to be a good hypothesis for one of the actual 
groups in the evidence data, even though the number of 
seed members known or inferable for it might be 
significantly less than its actual members.  The reasons for 
using this logic-based, seeded approach are threefold. 
First, the information in primary and secondary evidence is 
incomplete and fragmented.  By “connecting the dots” via 
logical inference we can extract information that is not 
explicitly stated and our statistical methods would not be 
able to infer.  Second, because the MI model needs to 
analyze access-restricted secondary data, it needs good 
initial focus such as seed groups of “bad guys” in order to 
query the data selectively.  The seeded approach therefore 
dramatically reduces data access cost as well as MI-
processing time.  Third, logical reasoning can apply 
constraints to the information available as well as rule out 
or merge certain group hypotheses. 
 To generate seed groups we use the PowerLoom KR&R 
system to scrub every piece of available membership 
information from primary evidence (which is smaller 
volume, less noisy and can be searched arbitrarily).  Given 
the size of primary evidence data we are working with 
(O(10,000) individuals and O(100,000) assertions) we can 
simply load it directly from the EDB into PowerLoom 
using its database interface and a set of import axioms. 
  The process of finding seeds is different for known and 
unknown groups. For known groups, we start with a query 
to retrieve existing groups and their explicitly declared 
members.  We then employ a number of logic rules to infer 
additional group members by connecting data that is 
available but disconnected.  For example, in the synthetic 
datasets available to us members of threat groups 
participate in exploitation cases (meant to model threat 
events such as a terrorist attack).  To find additional 
members of a group we can look for exploitations 
performed by a group that have additional participants not 
explicitly known to be members of the group.  The 
PowerLoom definition below for the relation 

memberAgentsByParticipation formalizes this type of reasoning  
(memberAgents relates a group and its members; deliberateActors 
relates groups or people to an event): 

(DEFRELATION memberAgentsByParticipation ((?g Group) (?p Person)) 
  :<= (AND (Group ?g)  
                  (Person ?p) 
                  (FAIL (memberAgents ?g ?p)) 
                  (EXISTS (?c) (AND (ExploitationCase ?c) 
                                                   (deliberateActors ?c ?g) 
                                                   (deliberateActors ?c ?p))))) 

For unknown groups, we use rules to look for patterns 
on events to find seeds.  The basic idea is to find teams 
participating in threat events that no (known) group is 
known to be responsible for.  Since people who participate 
in a threat event are part of a threat group, teams of people 
who are found to jointly participate in a threat event that 
cannot be attributed to a known group can be used as seeds 
for unknown groups.  Note, however, that such teams may 
be subsets of one of the known groups or that two or more 
of the teams may be part of the same unknown group. For 
that reason, it is vital to use merging techniques later to 
combine teams (or their extended groups) if appropriate. 
 The logic module can also check constraints to help in 
the merging of hypotheses. For example, a strong hint that 
two groups may be the same is that their members 
participated in the same exploitation events.  The rule 
below finds groups who participated in a given 
exploitation event indicating a potential duplicate group 
hypothesis if more than one group is found: 
(DEFRELATION groupHasMemberWhoParticipatedInEvent  
                                 ((?g Group) (?e VulnerabilityExploitationCase)) 
     :<= (AND (Group ?g)  (VulnerabilityExploitationCase ?e) 
                      (EXISTS ?p (AND (Person ?p) 
                                                     (OR (memberAgents ?g ?p) 
                                                             (memberAgentsByParticipation ?g ?p)) 
                                                    (deliberateActors ?e ?p))))) 
The use of memberAgentsByParticipation shows that these rules 
not only encode complex queries but also interconnect to 
build a real domain model.  There are about 50 complex 
rules of this type that are specific to group discovery.  
Even though the synthetic dataset used in our experiments 
was designed to be relatively poor in link types and 
attributes, the data is still quite complex.  It contains 72 
entity types (22 of which are actually instantiated) and 107 
relations and attributes (25 of which are actually 
instantiated in the data).  These entity and relation types 
are further organized by an ontology (developed by 
Cycorp) whose upward closure from the entity and relation 
types in the data contains a hierarchy of about 620 
concepts (or classes) and 160 relations.  Adding this to the 
O(100,000)  assertions representing the evidence we have 
a fairly large and complex knowledge base to work with. 

 While the examples given above are specific to the 
synthetic group discovery domain, the approach is general 
and applicable to other areas.  Evidence data will always 
be fragmented.  Such fragmentation is usually easy to 
handle by a human analyst, but it can be a big obstacle for 
an automated system. Using a logic-based model of the 



domain is a very powerful approach to overcome this 
problem and connect evidence fragments in useful ways. 

Finding Strong Connections Via a Mutual 
Information Model  
After exploiting the various explicit and implicit evidence 
fragments given in the EDB to generate a seed group, we 
try to identify additional members by looking for people 
that are strongly connected with one or more of the seed 
members.  To find two strongly connected entities, we 
need to aggregate the many other known links between 
them and statistically contrast those with connections to 
other entities or the general population.  This cannot be 
done via a logic-based approach and instead is achieved 
via an information-theoretic mutual information model. 
 The mutual information model can identify entities 
strongly connected to a given entity or a set of entities and 
provide a ranked list based on connection strength.  To do 
this it exploits data such as individuals sharing the same 
property (e.g., having the same address) or being involved 
in the same action (e.g., sending email to each other). 
Since such information is usually recorded by an observer 
we refer to it as evidence.  Time is often also an important 
element of evidence and is also recorded in the EDB. 
Without loss of generality we only focus on individuals’ 
actions in this paper, but not on their properties. 
 We transform the problem space into a graph in which 
each node represents an entity (such as a person) and each 
link between two entities represents the set of actions (e.g.,  
emails, phone calls etc.) they are involved in. For each 
node we represent the set of its actions with a random 
variable, which can take values form the set of all possible 
actions. Figure 2 illustrates this concept. There are four 
people and three possible actions: sending Email, making a 
Phone Call and participating in a Meeting. When a person 
is not involved in any of the above-mentioned actions we 
indicate that with the empty action ϕ.  For example, we can 
represent P1‘s actions with the random variable X1 which 
takes values from the set {E, P, M, ϕ} at any given time.  
 Most individuals in the LD evidence space are 
connected to each other either directly or indirectly.  For 
example, two people may eat at the same restaurant, drink 
coffee at the same cafe and take the same train to work 
every day without any strongly meaningful connection. On 
the other hand, three individuals may be strongly 
connected if they engage in atypical phone call patterns.  
 To address this problem we measure the mutual 
information (MI) between the random variables 
representing individuals’ activities.  MI is a measure of the 
dependence between two variables. If the two variables are 
independent, the MI between them is zero. If the two are 
strongly dependent, e.g., one is a function of another; the 
MI between them is large. We therefore believe that two 
individuals’ mutual information is a good indicator 
whether they are in fact strongly connected to each other 
or not compared to the rest of the population. 
 There are other interpretations of MI, for example, as 
the stored information in one variable about another 

variable or the degree of predictability of the second 
variable by knowing the first. Clearly, all these 
interpretations are related to the same notion of 
dependence and correlation. The correlation function is 
another frequently used quantity to measure dependence. 
The correlation function is usually measured as a function 
of distance or time delay between two quantities. It has 
been shown that MI measures the more general (non-
linear) dependence while the correlation function measures 
linear dependence (Li, 1990).  Therefore, MI is the more 
accurate choice to measure dependence. One of the 
important characteristics of MI is that it does not need 
actual variables values to be computed, instead it only 
depends on the distribution of the two variables. In 
classical information theory (Shannon, 1948) MI between 
two random variables X and Y is defined as:  
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where )(xP is the Prob )( xX = , )(yP is the Prob )( yY =  
and )|( xyP stands for Prob )|( xXyY == . In addition, 
MI(X;Y) = H(Y) - H(Y|X) = H(X) – H(X|Y), where the 
conditional entropy H(X|Y) measures the average 
uncertainty that remains about X when Y is known (see 
(Adibi et al. 2004) for more details about the MI model). 

Group Expansion via Mutual Information 
Given that we can use the mutual information calculation 
to find strongly connected individuals, we can exploit this 
capability to expand the seed groups provided in phase 1 
by the logic-based KR&R module.  This expansion is done 
in the following steps: 
(1) For each seed member in a seed group we retrieve all 
activities it participates in from primary and secondary 
data and add any new individuals found to the group.  This 
step therefore expands the seed group graph by one level.  
Note, that we obey query restrictions for secondary data 
and only ask one focused query per seed member. 
(2) Now we view the expanded group as the universe and 
compute MI for each connected pair in the graph.  
(3) Next we look for individuals that either have high MI 
score with one of the seed members or with all seed 
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Figure 2: MI Example. P1, P2, P3 and P4 represent 
people. E, P and M stand for Email, Phone Call and 
Meeting respectively.  The table on the right shows 
activities among individuals and the table on the left 
shows the MI among them. 



members when viewed as a single “super individual”.  
Members whose score is below a certain (fairly lax) user-
defined threshold are dropped from the list. 
(4) In this step the MI engine repeats the whole procedure 
by expanding the expanded group from the previous step 
one more level and recalculates MI for the new graph. For 
known groups we stop here and pass the result to the final 
thresholding step. 
(5) For unknown groups we usually have much smaller 
seed sets and therefore repeat the previous step one more 
time to achieve appropriately-sized group hypotheses. 
The group expansion procedure is performed for each seed 
group generated by the KR&R module and generates an 
MI-ranked list of possible additional members for each 
seed group.  This list is initially kept fairly inclusive and 
needs to undergo proper thresholding before it can be 
reported to a user or passed on to another LD component. 

Threshold Selection and Thresholding 
The result of the process described above is a list of 
extended groups where members are ranked by their 
mutual information scores.  In order to produce and report 
a definite result on which members we believe are actually 
part of the group, we need to cut the ordered list at some 
threshold.  The problem is how to set the threshold so that 
we get “good” (or even “optimal”) recall and precision for 
a particular application scenario.  We used an empirical 
method that selects a threshold for a dataset based on an 
empirical analysis of a number of groups in different types 
of datasets.  This method is discussed further in the section 
describing the experimental results. The good news is that 
(1) our group detection process generates a very selective 
ranking (i.e., we reach high recall fairly early) and (2) in 
real-world situations a good ranking is often more 
important than picking the best possible cutoff, since 
human analysts might be willing to accept a certain 
number of false positives in order to maximize the number 
of true positives they are after. 

Handling Noise Via a Noisy Channel model 
So far we assumed that we are capable to observe all 
evidence accurately. However, such accuracy occurs rarely 
in real world databases. We therefore consider the 
following kinds of noise in the formulation of our model: 
Observability (Negative Noise): This factor describes 
how much of the real data was observable. Not all relevant 
events that occur in the world will be observed or reported 
and might therefore not be known to LD components.  
Corruption: This type of noise varies from typos to 
misspelled names all the way to intentional 
misinformation. 
 The negative noise phenomenon has been discussed 
extensively in the communication literature. We adopt the 
view of a classical noisy channel scenario where a sender 
transmits a piece of information to a receiver. The 
transmission goes through a channel with certain noise 
properties. In our domain we view the ground truth (GT) 

as the “sender” and the evidence database (EDB) as the 
“receiver”.  While in a noiseless environment information 
is recorded in the EDB without error, in a noisy 
environment we have a noisy channel, which may alter 
every piece of evidence transmitted through it with some 
small probability p(noise). For instance, negative noise 
occurs if there is a phone call in the ground truth but no 
record of it in the EDB. Corruption occurs, for example, if 
there is no phone call in the ground truth but a record 
indicating one in the EDB. The MI framework is a natural 
fit for such model. Figure 3 illustrates a noisy channel for a 
given phone call. 

Complexity and Dataset Scale 
Real-world evidence data sets can be very large and we 
have to make sure that our techniques scale appropriately.  
The largest synthetic datasets we have analyzed so far 
contained O(100,000) events and O(10,000) individuals.  
Running the KOJAK GF on such a dataset takes roughly 5 
minutes for the logic-based seed generation and about 10-
20 minutes to run the MI engine on a 2Ghz Pentium-IV 
desktop with 1Gb of RAM.  Runtime for the MI engine 
varies depending on the overall connectivity of the data.   
While this is perfectly acceptable at the moment, we will 
eventually need to handle datasets that are at least two 
orders of magnitude larger, so let us look a bit closer at the 
architecture and algorithm complexity involved.  
The complexity of the MI model is relatively low. The MI 
engine expands only a limited number of nodes in the 
problem space starting from the seed members of a group. 
How many individuals are considered depends on how 
deeply we grow the link graph to build an extended group.  
So far, one to two levels have been sufficient.  Computing 
MI between two individuals is O(N*M) where N is the 
average number of people connected to a given individual 
and M is the average number of links a person is involved 
in.  Unless N and M grow significantly with larger datasets, 
the overall complexity is primarily dependent on the 
number of threat groups we are looking for. 
To be able to handle such large datasets in the logic-based 
seed generation phase, we built a new database access 
layer into PowerLoom that allows us to easily and 
transparently map logic relations onto arbitrary database 
tables and views.  By using these facilities we can keep 
smaller data portions such as the primary data in main 
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Figure 3: Noise model for a given “Phone Call” 



memory for fast access and processing, while keeping 
potentially very large secondary data sets in an RDBMS 
from where we page in relevant portions on demand.  
Particular attention was paid to be able to offload large 
join processing to the RDBMS wherever possible to avoid 
doing it inefficiently tuple-by-tuple in PowerLoom.  This 
gives us an architecture where we use a traditional 
RDBMS for storage and access to very large datasets but 
enrich it with a deductive layer that allows us to formulate 
more complex queries where necessary.  The complexity 
of the resulting system depends heavily on the nature of 
the queries and domain rules used which so far has proven 
to be manageable.  For example, the current system uses an 
ontology with about 800 concept and relation definitions 
and about 50 complex, non-taxonomic rules that link 
evidence fragments without any performance problems. 

Experimental Set-Up 
We have applied the KOJAK Group Finder to a wide 
variety of synthetic data. Access to real world databases 
has been a main concern in AI, machine learning and data 
mining communities in the past. The LD community is not 
an exception in this matter. In particular, since the LD goal 
is to relate people, place and entities, it triggers privacy 
concerns. The balance between privacy concerns and the 
need to explore large volumes of data for LD is a difficult 
problem. These issues motivate employing synthetic data 
for performance evaluation of LD techniques. 
Synthetic Data 
For the purpose of evaluating and validating our 
techniques, we tested them on synthetic datasets developed 
by Information Extraction & Transport, Inc. within the 
EELD Program (Silk 2003, Schrag 2003). These synthetic 
datasets were created by running a simulation of an 
artificial world.  The main focus in designing the world 
was to produce datasets with large amounts of 
relationships between agents as opposed to complex 
domains with a large number of entity properties.  
 From the point of view of group detection, the artificial 
world consists of individuals that belong to groups.  
Groups can be threat groups (that cause threat events) or 
non-threat-groups.  Targets can be exploited (in threat and 
non-threat ways) using specific combinations of resources 
and capabilities; each such combination is called a mode. 
Individuals may have any number of capabilities or 
resources, belong to any number of groups, and participate 
in any number of exploitations at the same time. 
Individuals are threat individuals or non-threat 
individuals. Every threat individual belongs to at least one 
threat group.  Non-threat individuals belong only to non-
threat groups.  Threat groups have only threat individuals 
as members.  Threat individuals can belong to non-threat 
groups as well. A group will have at least one member 
qualified for any capability required by any of its modes.  
Non-threat groups carry out only non-threat modes. 
 The evidence available in the dataset for our analysis 
consists of two main types of information: 

(1) Individual and group information. The existence of 
most individuals and some of the groups is available 
directly in the evidence.  The groups available in the 
evidence are known or named groups discussed earlier. 
(2) Activities from individuals. Individuals participate in 
activities related to resources, capabilities and events.  
Much like in the real world, information about those 
activities is not available directly, but rather indirectly as 
transactions (e.g., phone calls or email messages). 
Synthetic Data Characteristics 
One of the key advantages of using a simulated world is 
that we are able to test our system against a wide range of 
datasets.  In other words, we are able to create datasets 
with (almost) arbitrary characteristics, and therefore better 
understand the potential and limitations of our techniques. 
 Some of the features used in defining the datasets are in 
Table 1.  The values displayed are typical for the datasets 
we used in our evaluation; each dataset employs different 
values for each of these features.  Of particular interest are 
observability (how much of the artificial world information 
is available as evidence), corruption (how much of the 
evidence is changed before being reported) and clutter 
(how much irrelevant information that is similar to the 
information being sought is added to the evidence). 
Evaluation Metrics 
The quality of groups we find can be measured with 
traditional precision and recall metrics defined as follows:  
Given a proposed group G with g members which matches 
an answer group A with a members, and given that of the g 
proposed members only c are correct, precision P=c/g and 
recall R=c/a. Another metric that helps us analyze 
precision and recall in aggregate is the F-measure: 
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 The F-measure both requires and allows us to specify 
the desired trade-off between precision and recall through 
the b variable. A value of b=1 indicates that precision and 
recall are equally important; b = 2 means that recall is 
twice as important as precision, etc.  That is, using the F-
measure allows users of our module to specify their own 
desired trade-offs in terms of  b. 
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Table 1: Synthetic Data Characteristics 



Experimental Results 

Overall empirical properties 
Figure 4 shows a typical set of F-measure curves for 
different thresholds.  An important property is that our F-
measure curves have maximums (and thus optimums).  
Notice also that F-measure curves for higher values of b 
have wider “peaks”, which means they are more 
“forgiving” in threshold selection (a given variation of 
threshold provokes a smaller variation in F-measure.)   
Threshold Analysis 
Focusing on the F-measure, we defined an empirical 
model that allowed us to predict good threshold values for 
a given type of dataset.  Datasets vary in many dimensions, 
in particular on their levels of observability, corruption, 
and clutter.  Our goal was to define a model parametric on 
these dataset dimensions. 
 One key initial step is to define the base for the model.  
Possible bases include the average size of the groups we 
are looking for (if sufficiently known), the size of extended 
group and the size of the seed group.  Our empirical 
analysis indicated that the best alternative is to use the size 
of extended group as a basis for defining the threshold.  
We found that the ratio between the real size of the group 
we would be looking for and the size of the extended 
group we created as a hypothesis varies little and is usually 
around 11%-14%.  Another advantage is that this measure 
is organic to the mutual information model, that is, no 
additional information is needed. 
 The empirical model consists of defining one specific 
threshold (as a percentage of the extended group size) for 
each type of dataset. We used thirteen types of datasets 
that employed combinations of different values for the 
parameters in Table 1.  We then analyzed the F-measure 
curves to find optimums for each b-value (i.e., trade-off 
between precision and recall) and type of dataset. For 
example, for a b of 1, we predicted a threshold of 8% for a 
baseline dataset, 6% for a dataset with more clutter, 9% for 
a dataset with low observability and 3% for a dataset with 
both additional clutter and low observability. These 
thresholds are then used to predict the best threshold for a 
new dataset of a particular type.  
 

Results 
We have applied KOJAK to 26 datasets of varying 
complexity and characteristics. Table 2 shows some 
sample metrics for four datasets. Since there are many 
groups in each dataset we provide mean and variance 
values for precision and recall among all groups in a 
dataset.  The average F-measure for known groups varies 
between 0.71 and 0.85. Note that the differences in the 
properties of the datasets cause the best F-measure to be 
obtained with different recall and precision values. This 
shows that “harder” datasets, where precision drops more 
steeply require lower thresholds that yield lower recalls 
and higher precision values. A more detailed analysis with 
ROC curves is presented in (Adibi et al. 2004). 
 Table 2 also compares the KOJAK results against a 
baseline of using only the logic module. The results show 
that the logic module is very accurate (precision = 1), 
meaning all members found are provably correct. 
However, since the evidence is incomplete the logic 
module achieves a maximum recall of about 50%.   
 We also evaluated our threshold prediction model.  We 
found that the average F-measure for these datasets 
compares to the optimum F-measure obtained by using the 
best possible threshold for each group would result only in 
a difference of around 6%. In other words, the threshold 
model only “misses” 6% of whatever was available in the 
extended groups.  

Related Work 
Link discovery (LD) can be distinguished from other 
techniques that attempt to infer the structure of data, such 
as classification and outlier detection.  Classification and 
clustering approaches such as that of Getoor et al. (2001) 
try to maximize individual similarity within classes and 
minimize individual similarity between classes.  In 
contrast, LD focuses on detecting groups with strongly 
connected entities that are not necessarily similar.  Outlier 
detection methods attempt to find abnormal individuals.  
LD, on the other hand, identifies important individuals 
based on networks of relationships.  Additionally, outlier 
techniques require large amounts of data including normal 
and abnormal cases, and positive and negative noise. This 
is inappropriate for LD applications that need to detect 
threats with few or no available prior cases. 
 Mutual information has also been used in other domains 
such as finding functional genomic clusters in RNA 
expression data and measuring the agreement of object 
models for image processing  (Butte, 2000). 
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Figure 4: F-measure curves for different thresholds 
for a typical group. 
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Table 2: Scores for applying the KOJAK Group Finder 
to datasets of increasing complexity (known groups only).



 Our work can be distinguished from other group 
detection approaches such as Gibson, (1998) and Ng, 
(2001) by three major characteristics. First, GF is unique 
since it is based on a hybrid model of semantic KR&R and 
statistical inference. There are very few approaches that 
use semantic information. Second, in our approach each 
type of relation (link) is valuable and treated differently, in 
contrast to work in fields such as Web analysis and social 
networks. Third, with our technique, multiple paths 
between individuals or groups (direct or indirect) imply a 
strong connection which is different from techniques 
which focus on finding chains of entities.  
 The work closest to our own is that of Jeremy Kubica et 
al. (Kubica, 2002; Kubica, 2003) that uses a probabilistic 
model of link generation based on group membership. The 
parameters of the model are learned via a maximum 
likelihood search that finds a Gannt Chart that best 
explains the observed evolution of group membership. The 
approach has a strong probabilistic foundation that makes 
it robust in the face of very low signal-to- noise ratios.  
 Another recent approach to the LD problem is the use of 
probabilistic models (Cohn, 2001; Friedman, 1999; 
Getoor, 2001). Kubica et al. (2001) present a model of link 
generation where links are generated from a single 
underlying group and then have noise added. These models 
differ significantly from ours since we do not assume a 
generative model of group formation, but rather 
probabilistically determine each entity’s membership. 

Conclusion and Future Work 
In this paper we introduced the KOJAK Group Finder 
(GF) as a hybrid model of logic-based and statistical 
reasoning. GF is capable of finding potential groups and 
group members in large evidence data sets. It uses a logic-
based model to generate group seeds and a multi-relational 
mutual information model to compute link strength 
between individuals and group seeds.  Noise and 
corruption are handled via a noisy channel model.  Our GF 
framework is scalable and robust, and exhibits graceful 
degradation in the presence of increased data access cost 
and decreased relational information. The Group Finder is 
best-suited for problems where some initial information or 
group structure is available (e.g. finding hidden members 
of existing groups vs. detecting completely new groups) 
which is a common case in many real world applications.  
Group detection is useful for law enforcement, fraud 
detection, homeland security, business intelligence as well 
as analysis of social groups such as Web communities. 
 There are several lines of ongoing and future work, such  
as, determining group leaders by measuring their entropy, 
use of temporal information for more focused access to 
relevant information as well as employing sampling and 
data streaming techniques to deal with very large datasets. 
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